13 research outputs found

    A Neural “Tuning Curve” for Multisensory Experience and Cognitive-Perceptual Schizotypy

    Get PDF
    Our coherent perception of external events is enabled by the integration of inputs from different senses occurring within a range of temporal offsets known as the temporal binding window (TBW), which varies from person to person. A relatively wide TBW may increase the likelihood that stimuli originating from different environmental events are erroneously integrated and abnormally large TBW has been found in psychiatric disorders characterized by unusual perceptual experiences. Despite strong evidence of interindividual differences in TBW, both within clinical and nonclinical populations, the neurobiological underpinnings of this variability remain unclear. We adopted an integrated strategy linking TBW to temporal dynamics in functional magnetic resonance imaging (fMRI)-resting-state activity and cortical excitation/inhibition (E/I) balance, indexed by glutamate/Gamma-AminoButyric Acid (GABA) concentrations and common variation in glutamate and GABA genes in a healthy sample. Stronger resting-state longrange temporal correlations, indicated by larger power law exponent (PLE), in the auditory cortex, robustly predicted narrower audio-tactile TBW, which was in turn associated with lower cognitive-perceptual schizotypy. Furthermore, PLE was highest and TBW narrowest for individuals with intermediate levels of E/I balance, with shifts towards either extreme resulting in reduced multisensory temporal precision and increased schizotypy, effectively forming a neural ?tuning curve? for multisensory experience and schizophrenia risk. Our findings shed light on the neurobiological underpinnings of multisensory integration and its potentially clinically relevant inter-individual variability

    Long-Term Dynamic Changes of NMDA Receptors Following an Excitotoxic Challenge

    No full text
    Excitotoxicity is a form of neuronal death characterized by the sustained activation of N-methyl-D-aspartate receptors (NMDARs) triggered by the excitatory neurotransmitter glutamate. NADPH-diaphorase neurons (also known as nNOS (+) neurons) are a subpopulation of aspiny interneurons, largely spared following excitotoxic challenges. Unlike nNOS (−) cells, nNOS (+) neurons fail to generate reactive oxygen species in response to NMDAR activation, a critical divergent step in the excitotoxic cascade. However, additional mechanisms underlying the reduced vulnerability of nNOS (+) neurons to NMDAR-driven neuronal death have not been explored. Using functional, genetic, and molecular analysis in striatal cultures, we indicate that nNOS (+) neurons possess distinct NMDAR properties. These specific features are primarily driven by the peculiar redox milieu of this subpopulation. In addition, we found that nNOS (+) neurons exposed to a pharmacological maneuver set to mimic chronic excitotoxicity alter their responses to NMDAR-mediated challenges. These findings suggest the presence of mechanisms providing long-term dynamic regulation of NMDARs that can have critical implications in neurotoxic settings

    Aging and the Combined effects of ADRA2B and CB1 deletions on Affective Working Memory

    No full text
    Abstract Many studies have found that memory for affective material is better than memory for neutral information and memory for positive material compared to negative material is better in older adults. Behavioral, neurophysiological as well as single polymorphism differences have been advanced to account for these effects. Here, we aimed to examine whether the combination of two polymorphisms (ADRA2B and CB1) in older adults influences active maintenance and manipulation of emotional information in aging working memory. We examined genotype data from 207 older adults (56 double deletion carriers, 116 single deletion carriers and 35 no deletion carriers) who performed a verbal operation span-like task with positive, negative and neutral words. We found that subjects carrying both ADRA2B and CB1 variants generally remembered a higher number of words. In addition, double carriers showed positivity effects while single carriers showed more general emotional enhancement effects, especially as strings lengthened. These findings are amongst the first to suggest a haplotype account of positivity effects in older adults’ memory

    Inside the granulosa transcriptome

    No full text
    The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility

    Stemness Characteristics of Periodontal Ligament Stem Cells from Donors and Multiple Sclerosis Patients: A Comparative Study

    No full text
    Multiple sclerosis (MS) is the most prevalent and progressive autoimmune disease that affects the central nervous system, and currently, no drug is available for the treatment. Stem cell therapy has received substantial attention in MS treatment. Recently, we demonstrated the immunosuppressive effects of mesenchymal stem cells derived from neural crest-originated human periodontal ligament tissue (hPDLSCs) in an in vivo model of MS. In the present study, we comparatively investigated the stemness properties of hPDLSCs derived from healthy donors and relapsing-remitting MS patients. Stem cell marker expression, cell proliferation, and differentiation capacity were studied. We found that both donor- and MS patient-derived hPDLSCs at early passage 2 showed similar expression of surface antigen markers and cell proliferation rate. Significant level of osteogenic, adipogenic, chondrogenic, and neurogenic differentiation capacities was observed in both donor- and MS patient-derived hPDLSCs. Interestingly, these cells maintained the stemness properties even at late passage 15. Senescence markers p16 and p21 expression was considerably enhanced in passage 15. Our results propose that hPDLSCs may serve as simple and potential autologous stem cell niche, which may help in personalized stem cell therapy for MS patients

    Biofunctionalized Scaffold in Bone Tissue Repair

    No full text
    Bone tissue engineering is based on bone grafting to repair bone defects. Bone graft substitutes can contribute to the addition of mesenchymal stem cells (MSCs) in order to enhance the rate and the quality of defect regeneration. The stem cell secretome contains many growth factors and chemokines, which could affect cellular characteristics and behavior. Conditioned medium (CM) could be used in tissue regeneration avoiding several problems linked to the direct use of MSCs. In this study, we investigated the effect of human periodontal ligament stem cells (hPDLSCs) and their CM on bone regeneration using a commercially available membrane scaffold Evolution (EVO) implanted in rat calvarias. EVO alone or EVO + hPDLSCs with or without CM were implanted in Wistar male rats subjected to calvarial defects. The in vivo results revealed that EVO membrane enriched with hPDLSCs and CM showed a better osteogenic ability to repair the calvarial defect. These results were confirmed by acquired micro-computed tomography (CT) images and the increased osteopontin levels. Moreover, RT-PCR in vitro revealed the upregulation of three genes (Collagen (COL)5A1, COL16A1 and transforming growth factor (TGF)ÎČ1) and the down regulation of 26 genes involved in bone regeneration. These results suggest a promising potential application of CM from hPDLSCs and scaffolds for bone defect restoration and in particular for calvarial repair in case of trauma

    Pre-conceptional maternal exposure to cyclophosphamide results in modifications of DNA methylation in F1 and F2 mouse oocytes: evidence for transgenerational effects

    No full text
    Cyclophosphamide (CPM), an agent widely used in breast cancer therapy, has strong gonadotoxic effects. Female reproductive potential after therapy relies on ovulated oocytes deriving from primordial follicles surviving CPM toxic insult. In this study, we investigated in the mouse model whether pre-conceptional maternal exposure to CPM has epigenetic effects on offspring oocytes and if they are inherited. Adult female mice mated following CPM exposure, generated an offspring (F1) with delayed growth, normal fertility and altered methylation of three imprinted genes (H19, Igf2r and Peg3) in their oocytes. These alterations were present in oocytes generated by F2 mice. Pre-conceptional maternal exposure to fertoprotective agents AS101 and crocetin prior to CPM was not able to fully counteract alterations in offspring oocyte imprinting. For the first time, current study evidences that pre-conceptional CPM maternal exposure can affect the competence of offspring’s oocytes and warns on possible long-term effects on the health of next generations

    Deregulation of sertoli and leydig cells function in patients with klinefelter syndrome as evidenced by testis transcriptome analysis

    No full text
    Klinefelter Syndrome (KS) is the most common abnormality of sex chromosomes (47,XXY) and represents the first genetic cause of male infertility. Mechanisms leading to KS testis degeneration are still not completely defined but considered to be mainly the result of germ cells loss. In order to unravel the molecular basis of global testis dysfunction in KS patients, we performed a transcriptome analysis on testis biopsies obtained from 6 azoospermic non-mosaic KS patients and 3 control subjects
    corecore